Oxidative stress reduces renal dopamine D1 receptor-Gq/11alpha G protein-phospholipase C signaling involving G protein-coupled receptor kinase 2.
نویسندگان
چکیده
The dopamine D1 receptors (D1R), expressed in renal proximal tubules, participate in the regulation of sodium transport. A defect in the coupling of the D1R to its G protein/effector complex in renal tubules has been reported in various conditions associated with oxidative stress. Because G protein-coupled receptor kinases (GRKs) are known to play an important role in D1R desensitization, we tested the hypothesis that increased oxidative stress in obese Zucker rats may cause GRK2 upregulation and, subsequently, D1R dysfunction. Lean and obese rats were given normal diet or diet supplemented with antioxidant lipoic acid for 2 wk. Compared with lean rats, obese rats exhibited oxidative stress, D1R were uncoupled from G(q/11)alpha at basal level, and SKF-38393 failed to elicit D1R-G protein coupling, stimulate phospholipase C (PLC), and inhibit Na-K-ATPase activity. These animals showed increased basal protein kinase C (PKC) activity and membranous translocation of GRK2 and increased GKR2-G(q/11)alpha interaction and D1R serine phosphorylation. Enzymatic dephosphorylation of D1R restored SKF-38393-induced adenylyl cyclase stimulation but not PLC activation. Treatment of obese rats with lipoic acid restored D1R-G protein coupling and SKF-38393-induced PLC stimulation and Na-K-ATPase inhibition. Lipoic acid treatment also normalized PKC activity, GRK2 sequestration, and GKR2-G(q/11)alpha interaction. In conclusion, these data show that oxidative stress increases PKC activity causing GRK2 membranous translocation. GRK2 interacts with G(q/11)alpha and acts, at least in part, as a regulator of G protein signaling leading to the D1R-G(q/11)alpha uncoupling, causing inability of SKF-38393 to stimulate PLC and inhibit Na/K-ATPase. Lipoic acid, while reducing oxidative stress, normalized PKC activity and restored D1R-G(q/11)alpha-PLC signaling and the ability of SKF-38393 to inhibit Na-K-ATPase activity.
منابع مشابه
TRANSLATIONAL PHYSIOLOGY Role of oxidative stress in defective renal dopamine D1 receptor-G protein coupling and function in old Fischer 344 rats
Fardoun, Riham Zein, Mohammad Asghar, and Mustafa Lokhandwala. Role of oxidative stress in defective renal dopamine D1 receptor-G protein coupling and function in old Fischer 344 rats. Am J Physiol Renal Physiol 291: F945–F951, 2006. First published June 6, 2006; doi:10.1152/ajprenal.00111.2006.—Aging is associated with an increase in oxidative stress. Previously, we have reported that dopamine...
متن کاملTempol reduces oxidative stress, improves insulin sensitivity, decreases renal dopamine D1 receptor hyperphosphorylation, and restores D1 receptor-G-protein coupling and function in obese Zucker rats.
Oxidative stress plays a pathogenic role in hypertension, particularly the one associated with diabetes and obesity. Here, we test the hypothesis that renal dopamine D1 receptor dysfunction in obese Zucker rats is caused by oxidative stress. One group each from lean and obese Zucker rats received tempol, a superoxide dismutase mimetic in drinking water for 2 weeks. Obese animals were hypertensi...
متن کاملOxidative stress causes renal dopamine D1 receptor dysfunction and hypertension via mechanisms that involve nuclear factor-kappaB and protein kinase C.
Renal dopamine, via activation of D1 receptors, plays a role in maintaining sodium homeostasis and BP. There exists a defect in renal D1 receptor function in hypertension, diabetes, and aging, conditions that are associated with oxidative stress. However, the exact underlying mechanism of the oxidative stress-mediated impaired D1 receptor signaling and hypertension is not known. The effect of o...
متن کاملRole of oxidative stress in defective renal dopamine D1 receptor-G protein coupling and function in old Fischer 344 rats.
Aging is associated with an increase in oxidative stress. Previously, we have reported that dopamine failed to inhibit proximal tubular Na-K-ATPase and to promote sodium excretion in old rats (Beheray S, Kansra V, Hussain T, and Lokhandwala MF. Kidney Int 58: 712-720, 2000). This was due to uncoupling of dopamine D1 receptors from G proteins resulting from hyperphosphorylation of D1 receptors. ...
متن کاملHuman kidney-2 cells harbor functional dopamine D1 receptors that require Giα for Gq/11α signaling.
A recent study demonstrated that the dopamine D1 receptor (D1R) is nonfunctional in human kidney cells, HK2 cells, in terms of their inability to couple to Gs protein in response to the D1R agonist fenoldopam. Since D1R also couples to Gq protein, we tested whether D1R is functional in HK2 cells in terms of their ability to couple to Gq and produce downstream signaling. For comparison, we also ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 293 1 شماره
صفحات -
تاریخ انتشار 2007